NSRP National Shipbuilding Research Program

NSRP RA Project: 2018-454-013 Scaling Up 3D Printed Steel Castings

Presented by Kolby Pearson March 28, 2023

All Panel Meeting

Castings in Shipbuilding

- Castings in Shipbuilding
 - High cost
 - Long lead times
 - Casting manufacturing issues
- Friction Stir Additive Deposition (FSAD) Process utilized by MELD Manufacturing Corp
 - AM solution on scales relevant to shipbuilding

MELD Manufacturing Method

- MELD is a solid-state process, meaning the material does not reach the melting temperature during printing
- MELD is able to produce highquality wrought materialsLow residual stress

 - Full density
 - Not susceptible to porosity, hot cracking, or other common problems of melt-based technologies

MELD L3 Model Machine

MELD Manufacturing Method

Relevance to Shipbuilding:

- Open air operation allows for scaling up
- Solid metal input reduces danger of powder metal
- No melting means all alloys can be used
- Fully dense parts have wrought and forged properties
- Used for 3D printing and repair

Open Air Printing

FSAD/MELD Process

- The MELD process is performed by passing the filler material through the hollow rotating tool (stirring tool).
- Frictional heating creates robust metallurgical bond.
- Subsequent layers are created by raising the tool by the desired layer height.

Enhanced Physical Properties

- MELD Process refines grain sizes through the stirring process.
- Creates increased strength properties, wear resistance, and corrosion resistance.

Inconel 625 - Filler material Average grain size: ~ 12 «m

Inconel 625 - MELDed material Average grain size: ~ 5 «m

Inconel Grain Size Example (MELD Manufacturing)

Previous RA #2018-454: Scaling Up 3D Printed Castings

- Successfully demonstrated that scaled up MELD process:
 - Utilized larger-size aluminum feedstock materials
 - Increased deposition rate per pass
 - Maintained equivalent material quality
- Advanced Meld technology relevance to the shipbuilding industry magnitude.
- Current efforts aim to demonstrate the same scalability in steel alloys.

Previous RA #2018-454: Scaling Up 3D Printed Castings

Increased Deposition Rate

- Larger Tool/Nozzle
 - 33% increase in tool diameter
- Larger feedstock opening
 - Increased from (3/8)" square bar to (1/2)" square bar
- Deposition increase of 355%
 - Maintained equivalent material properties

Stirring Tool Nozzle

Project Objectives

Four Key Objectives

- 1. Determine metallic alloy for nozzles to print with higher yield steel material
- 2. Establish parameters necessary to achieve high yield steel deposition
- 3. Validate that material properties of printed test coupons meet NAVSEA standards
- 4. Document details of MELD process to improve products to improve future FE simulation

Description of Project Roles

GD NASSCO

• Project Lead

MELD Manufacturing

• Develop technology required to print high-strength steel

NAVSEA

• Physical and Metallurgical testing of MELD coupons

HII

• Project collaboration and assistance

Altair

 Develop report summarizing MELD design constraints and process analysis

ABS

Regulatory body review of project results

Testing Plan

Materials Testing at Carderock

- 1. Tensile Testing
 - 9 Total samples (X, Y, Z)
- 2. Metallography (hardness testing on samples prior)
 - 6 Total samples (X, Y)
- 3. Charpy Impact Testing
 - 6 Total Samples (X, Y)
- 4. Chemistry
 - 3 Total Samples

Initial AH36 Prints

- Initial high-yield material deposition has been successful
- Developing parameters for ideal AH36 deposition is necessary prior to test block creation and Tool Wear Study

Print Samples from Initial Trials

AH36 Print Testing

- MELD is evaluating initial mechanical property and microstructure of samples
- Results show similar feedstock mechanical properties from small specimen tensile tests

Preliminary Sample Tensile Testing (Longitudinal Direction)

Preliminary Print

AH36 Print Testing

- Current testing has been longitudinal (direction of tool path) and through thickness (vertical) samples
- MELD is continuing parameter refinement and aims to develop multi-track builds for evaluation

Preliminary Print

Preliminary Sample Tensile Tests (Through Thickness)

Project Path Forward

- MELD to optimize print parameters for the AH36 material and create blocks for testing
- NSWC Carderock will conduct a variety of material tests on specimens and report results
- Altair to compile plan with key parameters required to develop a model to simulate the MELD deposition process

Questions?

