Building and Modernizing Affordable Warships with Standard Modular Compartments

“Sea Power to the Hands of Our Sailors”

Nilo Maniquis
PEO IWS D - Ship Systems Engineer
March 15, 2016
Leadership/Stakeholders Briefed
On Modular Combat System Approach

<table>
<thead>
<tr>
<th>Organization</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO IWS Senior Advisory Team (SAT)</td>
<td>21 Jul 15</td>
<td>Supports the Concept</td>
</tr>
<tr>
<td>Bob Nagle, Larry Rogers, Mickey Bourne, Fred Parker, Dub Summerall, Brian Eckerle</td>
<td></td>
<td>Programmatic Challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution of Funds</td>
</tr>
<tr>
<td>PEO IWS Front Office</td>
<td>22 Jul 15</td>
<td>PEO Approved for External Communications and Move Forward with Developing the Solution</td>
</tr>
<tr>
<td>RDML Jon Hill, Mr. Bill Bray Ms. Karen Davis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEO SHIPS AM</td>
<td>29 Jul 15</td>
<td>“We should have done this sooner.”</td>
</tr>
<tr>
<td>Bill Budd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEO SHIPS PMS400D8</td>
<td>30 Jul 15</td>
<td>“We should pursue as an alternative to the path we’re on.”</td>
</tr>
<tr>
<td>R. Sturges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEO SHIPS Director of Science & Technology</td>
<td>31 Jul 15</td>
<td>Support concept and offered to champion</td>
</tr>
<tr>
<td>G. Sturtevant</td>
<td></td>
<td>Raised Concerns with Flexible Infrastructure vs Studs</td>
</tr>
<tr>
<td>OPNAV N96F</td>
<td>12 Aug 15</td>
<td>Understand concept</td>
</tr>
<tr>
<td>CAPT Halvorson</td>
<td></td>
<td>“What’s the Payback?”</td>
</tr>
<tr>
<td>SEA 05H</td>
<td>31 Aug 15</td>
<td>“This is exactly what we need.”</td>
</tr>
<tr>
<td>Mr. Bill Williford</td>
<td></td>
<td>Scheduling a meeting with Admiral Fuller and Mr. Kistler</td>
</tr>
<tr>
<td>SEA 21 (PMS 407) AEGIS SPM</td>
<td>8 Sep 15</td>
<td>“Must be in synch with PMS400D DDG 51 AEGIS New Construction.” May implement Hybrid solution as applicable to Modernization. Schedule meeting with Randy Bennett and Dale Davis.</td>
</tr>
<tr>
<td>CAPT Ted Zobel, Evan Littig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEO IWS SAT</td>
<td>8 Sep 15</td>
<td>“The concept is absolutely in line with the Design Budgeting (DB) strategy successfully employed in Combatant Shipbuilding over the last 35 years and was employed on CG 47 Class”</td>
</tr>
<tr>
<td>Randy Fortune</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **ASNE/SNAME SD-8 Panel and Ship Design Committee**| 10 Sep 15| Admiral Eccles “This concept is a great idea and very similar to submarine building.”
Jack Abbott “I’ve been waiting 40 years for this.” |
| Tim Hickey, Bernie Dombrosky | 11 Sep 15| We will support consideration for SESS and Radio Room |
| | | Similar to Radio Equip Unified foundations used on CG 47 Class |
Leadership/Stakeholders Briefed On Modular Combat System Approach

<table>
<thead>
<tr>
<th>Organization</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO SHIPS PMS 400D5/D7/D8 Cliff Rader, Katie Connelly, Rich Sturges</td>
<td>17 Sep 15</td>
<td>There is no way we can stay the course considering AMDR and the restricted/limited change budget of 3%. Agreed to develop a Modularity Management Plan and engage LYS, FYS and Shipbuilders to develop a Tasking Instruction to aid in developing Shipbuilder ROMs for this effort.</td>
</tr>
<tr>
<td>SEA 21 (PMS 407) Randy Bennett</td>
<td>23 Sep 15</td>
<td>“This concept makes sense, is a good approach to do as an alternate to our usual Shipbuilding approach and can leverage lessons learned from AMOD” Agreed to engage the Planning Yard to develop Modernization approach and add to MADWG tasking.</td>
</tr>
<tr>
<td>NAVSEA 05 RDML Fuller, Mr. Mike Kitsler, Mr. Bill Williford, Ms. Robyn White, Eric Duncan, Shelly Yost, Timothy Barnard</td>
<td>25 Sep 15</td>
<td>RDM Fuller and Mr. Kitsler stated “We will do everything we can to assist IWS in the development of a NAVSEA Specification to include the SMI solution in support of Shipbuilding. We should push to implement this solution on LXR.” Mr. Williford “This is the way we should go.” Ms. Robyn White “I love the Modular concept.”</td>
</tr>
<tr>
<td>DASN Ships, DASN Air, and DASN RDT&E Mr. Vance Brahowsky, Mr. Ed Jackonowski, Mr. Nick Gurkin, Mr. Mike Boland, CAPT(sel) Jon Garcia, Ms. Dawn Doebel, Ms. Cathy Spencer, and Mr. Derrick Lewis</td>
<td>19 Oct 15</td>
<td>“Why did it take us this long [15 years, to catch up to Subs]?” “This solution is feasible but make sure to look at the ROI, the savings are clear from ECP elimination but there will be a cost for the CM, facility, and government resources needed to support this approach.”</td>
</tr>
<tr>
<td>PEO Ships and PEO IWS D Ms. Bilyana Anderson and Ms. Karen Davis</td>
<td>05 Nov 15</td>
<td>“We [PEO Ships] will help you with whatever shipbuilding has to offer.” “We need to tread carefully; invoke change where we can as this involves a lot of coordination and management including maintaining business rules.” “It [this concept] could be powerful.”</td>
</tr>
</tbody>
</table>
Leadership/Stakeholders Briefed On Modular Combat System Approach

<table>
<thead>
<tr>
<th>Organization</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Defense Test Ship Demonstration</td>
<td>17-18 FEB 16</td>
<td>Demonstrated the Modularity Decking System (MDS) concepts to stakeholder NAVSEA personnel on the SDTS. Actions were taken to create an Modularity IPT and next steps forward the FLT III RFP.</td>
</tr>
<tr>
<td>PEO Ships- Cliff Rader, Zack Dixon, Glen Sturtevant, DASN Ships-Vance Brahowsky, ATO ATT- LCDR Eid Fakhouri, SEA05D-Jacob Trithart</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engagement Briefing Plan Forward

Scheduled:
- OPNAV N96- CDR Gantt and Mr. Earl Bowers- 17 MAR
- PEO Tech Council-18 MAR
- Aegis Focus Day- 18 MAR, CAPT Druggan (PEO IW 1.0), CAPT Vandroff (PMS 400), and CAPT Zobel (PMS 407)

Upcoming:
- Mr. Shevock & Christy Goeff, SEA 06- TBD
- Update to: RDML Fuller, SEA 05- TBD
- Ms. Valdez, DASN Ships- TBD

Future Meetings:
- RADM Gale & Jay Stefany, PEO Ships
- RDML Antonio, PEO LCS
- RDML Galinis & Ms. Davis, SEA 21
Traditional Shipbuilding and Modernization
- Systems are Selected and “Locked” Prior to New Construction Ship’s RFP
- MYP Exacerbates Older Technology for Each Ship Delivered
- “Stick Built” Construction and Costly to Change
- Modernization Reduced to Costly Mid-Life or Ship Does Not Meet Expected EOL

Modular Shipbuilding and Modernization
- Latest Systems Installed for Each Ship Built
- MYP Ships are Built to a Single Design But Will Receive Latest Systems
- More Efficient and Affordable to Build Modular Designed Ships
- Modernization is Less Costly with More Intervals for Upgrades Throughout Ship’s Life

Traditional

- RFP to SCN
- In-service to Mid-Life Modernization
- MYP Ship Deliveries
- Technology/Threat Pace

Modular

- RFP to SCN
- In-service to MYP Ship Deliveries
- Technology/Threat Pace
- More Intervals for Upgrades Throughout Ship’s Life
Opportunities Exist in New Construction to Deliver More Capable and Affordable Warships
Speed to Capability

Traditional: 11-16 Years Technology for All Ships Fleet Delivered in the MYP

- **Stick Built Construction**
- **Systems Locked at Ship’s RFP**
- **High Costs for Changes**

![Diagram](image1)

Modular: 3-4 Years Technology for Each Fleet Ship Delivered

- **Standard Modular Compartments**
- **Move-In-Ready (MIR) Compartments**
- **Latest Systems Installed**

![Diagram](image2)
Proven Best Practices

DDG 51 Modernization
- Six Months Production
- Pre-fabricated Foundations
- Cabling Mock-ups
- Just-in-Time Delivery

AEGIS Ashore
- 120 Days Relocatable
- Modular Design to Final Assembly
- Kitted Equipment & Pre-Fabricated Deck House
- Value Streamed Construction Processes

Virginia Class Submarine
- 84 Months to 60 Months Reduction for Ship Delivery
- Modular Production: Manufacturing to Final Assembly, “1-3-8” Rule
- Design for Affordability
- CCSM Off-Hull Assembly and Test Site (COATS)
Standard Modular Compartment and Equipment Modularity Assembly

MDS Skid

MDS Components
- Adapter Plate
- Cable Ladder
- Piping Assembly

Standard Modular Interface (SMI)
- Standard Overhead Interface (SOI)
- Standard Bulkhead Interface (SBI)
- Standard Deck Interface (SDI)

MDS GFE Assembly

Standard Modular Interface (SMI)
- Standard Overhead Interface (SOI)
- Standard Bulkhead Interface (SBI)
- Standard Deck Interface (SDI)
Standard Modular Compartment

- Government Provides in Ship’s RFP SMC with NTE SWAP-C Requirements
- Shipbuilder Delivers SMC with NTE SWAP-C Services Prior to Ship’s Delivery
- Shipbuilder Assembles Modular Equipment with Government Oversight
- Government Commences Test Compartment Assembly

Achieves Flexible Ship Tenets:
- Pre-assembled Combat System and Install Just-in-Time Utilizing Standardizes Interfaces
- Allows for Rapid Installation
- Uses Pre-planned Access Routes
- Provides Sufficient Growth Margins for Distributed Systems
- Reduces Shipbuilding Acquisition Cost

Ship Production Benefits:
- One Ship Design Across the MYP
- Reduces Shipbuilder Engineering Services
- Reduces Labor in Production/Materials
- Enables Efficient Production Processes
- Reduces Shipbuilder Delay and Disruption
- Eliminates GFE Storage Costs

Standard Bulkhead and Overhead Interface

Standard Deck Interface: Grid of Threaded Studs

SWAP-C Distributed Systems: Power, Chilled Water, Data Inter-Cabling

Pre-Designed Access
Equipment Modularity Process

- Pre-fabricate/Pre-Outfitting Facility (Secured/Environmental Controlled)
 1. Kit Equipment
 2. Assemble Equipment
 3. Pre-Fabricate Compartments

- Shipboard (Secured/Environmental Controlled)
 4. MIR Compartments
 5. Final Assembly
 6. Shipboard Testing
Shipbuilder Modularity Process

- Ship Designed With SMCs, Pre-fabrication to Final Assembly
- Environmental Controlled and Secured Facility
- Accommodates Technology Upgrades Affordably
- Innovative, Repetitive, Producible, Efficient, and Affordable

Single Ship Class Design

Drive Innovation and Affordability into our Ship Building Processes!
USS Paul F. Foster (EDD 964) Self Defense Test Ship (SDTS) Demonstration

- Evaluated Producibility of Stud and Skid and the Installation Process
- Demonstrated Feasibility and Qualified Stud Welding Process
- Demonstrated Assembly to Stud Installation Process
Template & Stud Installation Sequence

Template Installation Sequence
- Digitally Establish Compartment Reference Frame (Horizontal Plane and Fore-aft Line) for Cabinet Leveling
- Assemble Template Frame Members and Plates
- Digitally Level and Align Template to Compartment Reference Frame

Stud Welding Sequence
- Assemble and Align Welding Template
- Grind Surface
- Weld Studs
- Clean-up Welds
- Move Welding Template
- Repeat

![Diagram of template and stud installation process with labels for studs installed perpendicular to a common plane using a template, bottom of MDS Skid, and distorted deck plating.](image-url)
Notional Traditional Shipyard Foundation and Cabinet Installation

11 Work Days For Single Foundation

Foundation Installation Trades Required

<table>
<thead>
<tr>
<th>Step</th>
<th>Mechanical</th>
<th>Welder</th>
<th>Firewatch</th>
<th>Painter</th>
<th>QA Rep</th>
<th>Ship Fitter</th>
<th>Fitter Helper</th>
<th>Riggers</th>
<th>Pipe Fitter</th>
<th>Sheet Metal</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a/b/c/d</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>

26 Cabinets in Single Compartment (CSER 2)

2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56		
1a																													
1b																													
1c																													
1d																													
Traditional vs. Modular Approach

Traditional: Notional Installation of 26 Cabinets in Single Compartment (CSER 2)

- Start Fab
- Lay Keel
- Assembly
- Outfitting
- Launch
- CSLO
- Delivery

5 years

2. Rig Equipment
3. Foundation Treatment
4. Support Systems
5. Equipment Connection

55 Work DAYS for Entire Space

Modularity: Notional Installation of 26 Cabinets in Single Compartment (CSER 2)

- Start Fab
- Lay Keel
- Assembly
- Outfitting
- Launch
- MIR
- CSLO
- Delivery

5 years

1. Survey Template into Position, Prep Area, Weld Studs
2. Install Hardware, Torque Hardware, Bonding and grounding readings, and connect ECW piping/services

< 10 Work HOURS for Entire Space

Potential 97.7% Reduction

* Work performed as part of the Move-in-Ready Compartment
Moving Forward

- Qualify Modular Interfaces to a NAVSEA Standard
- Transition Modularity from Engineering Development Models (EDMs) to Program of Record
- Incorporate Modularity, Pre Fabrication and Final Assembly Approaches into Future Shipbuilding RFP and Modernization Programs

Challenge Status Quo to Ensure Affordability!
Summary

- Modularity must be designed at all levels (Component, Enclosure, System, Ship)
- Utilize Value Stream eliminating “wait time”, convert manual labor to innovation, automation and new techniques
- Institute a Culture of Affordability
$E^2 = R^2$

Evolutionary Effort = Revolutionary Results

“Sea Power to the Hands of Our Sailors”
Notional Modular Deck System (MDS)

Shipyard Cabinet Installation

Single Cabinet (CSER 2)

- 2 Hours
- 45 Minutes

1. Survey Template into Position, Prep Area, Weld Studs

2. Install Hardware, Torque Hardware, Bonding and grounding readings, and connect ECW piping/services

* Work performed as part of the Move-in-Ready Compartment

MDS Assembly

- Assembled at Off Ship Location
- Includes Ancillary Items (cable ladders, pipe support, etc.)
- Full Assembly Ready for Transport to Ship

26 Cabinets in Single Compartment (CSER 2)

- < 6 Work Hours For Entire Space

MDS installation Trades Required

<table>
<thead>
<tr>
<th>Step</th>
<th>Surveyor</th>
<th>Mechanical</th>
<th>Welder</th>
<th>Firewatch</th>
<th>Painter</th>
<th>Pipe Fitter</th>
<th>Sheet Metal</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

- 26 Cabinets in Single Compartment (CSER 2)
- Install Hardware, Torque Hardware, Bonding and grounding readings, and connect ECW piping/services

Standard MDS Skid (common design)

- Precise Hole Mounting Pattern
- Adapter Plates for various equipment mounting options
- Economy of Scale Production
- Eliminates Recurring Engineering for Foundation Design

Survey Template into Position, Prep Area, Weld Studs

Install MDS Assembly
Roles and Responsibilities

Government to Shipbuilder
- Provide Modular SWAP-C Requirements ISO Ship’s RFP
- Provide Modular Skid and Components “Build to Print” Drawings ISO Modular Component Production, Kitting and Assembly of GFE Equipment
- Provide Shipyard Facility Modular Compartment Arrangement Drawings ISO Pre-fabrication of Modular SWAP-C Compartments
- Provide Shipboard Installation and Detail Instruction ISO Ship’s Move-In-Ready Modular SWAP-C Compartments

Shipbuilder to Government
- Deliver Modular SWAP-C Compartments
- Produce Modular Skids and Components
- Perform GFE Kitting and Assembly
- Build Pre-Fabricated Modular Compartments in an Environmentally Controlled and Secured Shipyard Facility
- Disassemble and Transport Pre-Fabricated Compartments to Ship
- Install Pre-Fabricated Compartments into Ship’s Modular SWAP-C Compartments during MIR Milestone
Notional MDS Compartmentalized Installation

In the Notional MDS Compartmentalized Installation, MDS Compartmentalized Installation is significantly quicker than the traditional installation approach (hours vs. months). Multiple installation teams enable concurrent installation of 4 MDS units simultaneously.

The diagram illustrates the timeline of installation tasks, with each MDS unit represented. The steps include roll-in, remove wheels, torque, and connect services. The key metrics highlight a 5-hour start-to-stop timeline for the installation process.
MDS Compartmentalized Installation Conditions and Assumptions

- Assumes CSER 2 onboard DDG with a 26 cabinet/equipment layout
- “Installation” is defined as the moment the MDS assembly enters compartment until it is landed, torqued, and services are hooked up
- Adequate Access Cut with sufficient landing area to pre-stage all cabinets in optimum installation sequence
- Level path for MDS Units to transition from exterior landing area to within compartment
- All Studs and necessary support structure (SDI) has been installed, surveyed, and prepped
- Assumes 4 rows of cabinets within compartment to allow for nearly simultaneous installation of four MDS Assemblies
- Shim kit calculations completed, kitted, and pre-installed on studs
- All MDS Assemblies are pre-assembled including wheels/castors to facilitate loadout
- Adequate overhead clearance to roll MDS without requiring tilting or rigging using chainfalls, slings, etc.
- No Deck mounted obstacles that would prohibit loadout (e.g. cableways, piping, etc.)
- Runway plates installed ahead of MDS Assembly installation to facilitate multiple row loadout
- Four teams (minimum) to move and install MDS Assemblies onto Studs within compartment
- Hardware and tools pre-staged in compartment
- Additional staging team outside compartment maneuvering MDS Units into CSER 2 Access Cut Opening to meet installation demand
- Assumes water connections and simple HVAC connections (No Direct Air Pick-ups)